Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Mol Biosci ; 9: 898874, 2022.
Article in English | MEDLINE | ID: covidwho-1952441

ABSTRACT

The ongoing pandemic coronavirus disease (COVID-19) caused by a novel corona virus, namely, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has had a major impact on global public health. COVID-19 cases continue to increase across the globe with high mortality rates in immunocompromised patients. There is still a pressing demand for drug discovery and vaccine development against this highly contagious disease. To design and develop antiviral drugs against COVID-19, the main protease (Mpro) has emerged as one of the important drug targets. In this context, the present work explored Jadwar (Delphinium denudatum)-derived natural alkaloids as potential inhibitors against Mpro of SARS-CoV-2 by employing a combination of molecular docking and molecular dynamic simulation-based methods. Molecular docking and interaction profile analysis revealed strong binding on the Mpro functional domain with four natural alkaloids viz. panicutine (-7.4 kcal/mol), vilmorrianone (-7.0 kcal/mol), denudatine (-6.0 kcal/mol), and condelphine (-5.9 kcal/mol). The molecular docking results evaluated by using the MD simulations on 200 nanoseconds confirmed highly stable interactions of these compounds with the Mpro. Additionally, mechanics/generalized Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energy calculations also affirmed the docking results. Natural alkaloids explored in the present study possess the essential drug-likeness properties, namely, absorption, distribution, metabolism, and excretion (ADME), and are in accordance with Lipinski's rule of five. The results of this study suggest that these four bioactive molecules, namely, condelphine, denudatine, panicutine, and vilmorrianone, might be effective candidates against COVID-19 and can be further investigated using a number of experimental methods.

4.
J Infect Dev Ctries ; 15(5): 653-656, 2021 05 31.
Article in English | MEDLINE | ID: covidwho-1262632

ABSTRACT

Understanding the efficacy and durability of heterologous immunization schedules against SARS-CoV-2 is critical, as supply demands and vaccine choices become significant issues in the global vaccination strategy. Here we characterize the neutralizing antibodies produced in two subjects who received combination immunizations against SARS-CoV-2, first with Covishield (Oxford-AstraZeneca) vaccine, followed 33 days later with a second dose (booster) shot of the Pfizer-BioNTech vaccine. Serum samples were collected 25 days following the primary vaccination and 13 days after the secondary Pfizer vaccination. Both subjects exhibited increased levels of isotype IgG and IgM antibodies directed against the entire spike protein following immunizations. These antibodies also exhibited increased reactivity with the receptor binding domain (RBD) in the spike protein and neutralized the infectivity of replicating vesicular stomatitis virus (VSV) that contains the COVID-19 coronavirus S protein gene in place of its normal G glycoprotein. This VSV pseudovirus also contains the reporter gene for enhanced green fluorescent protein (eGFP). Antibody titers against the spike protein and serum neutralization titers against the reporter virus are reported for the 2 heterologous vaccinated individuals and compared to a positive control derived from a convalescent patient and a negative control from an unexposed individual. The Pfizer-BioNTech vaccine increased antibody binding to the spike protein and RBD, and approached levels found in the convalescent positive control. Neutralizing antibodies against the VSV-S pseudovirus in the 2 subjects also approached levels in the convalescent sera. These results firmly validate the value of the Pfizer-BioNTech vaccine in boosting immunity following initial Covishield inoculation.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Humoral/drug effects , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , Case-Control Studies , Female , Humans , Male , SARS-CoV-2
5.
J Infect Dev Ctries ; 14(1): 3-17, 2020 01 31.
Article in English | MEDLINE | ID: covidwho-1512

ABSTRACT

On 31 December 2019 the Wuhan Health Commission reported a cluster of atypical pneumonia cases that was linked to a wet market in the city of Wuhan, China. The first patients began experiencing symptoms of illness in mid-December 2019. Clinical isolates were found to contain a novel coronavirus with similarity to bat coronaviruses. As of 28 January 2020, there are in excess of 4,500 laboratory-confirmed cases, with > 100 known deaths. As with the SARS-CoV, infections in children appear to be rare. Travel-related cases have been confirmed in multiple countries and regions outside mainland China including Germany, France, Thailand, Japan, South Korea, Vietnam, Canada, and the United States, as well as Hong Kong and Taiwan. Domestically in China, the virus has also been noted in several cities and provinces with cases in all but one provinence. While zoonotic transmission appears to be the original source of infections, the most alarming development is that human-to-human transmission is now prevelant. Of particular concern is that many healthcare workers have been infected in the current epidemic. There are several critical clinical questions that need to be resolved, including how efficient is human-to-human transmission? What is the animal reservoir? Is there an intermediate animal reservoir? Do the vaccines generated to the SARS-CoV or MERS-CoV or their proteins offer protection against 2019-nCoV? We offer a research perspective on the next steps for the generation of vaccines. We also present data on the use of in silico docking in gaining insight into 2019-nCoV Spike-receptor binding to aid in therapeutic development. Diagnostic PCR protocols can be found at https://www.who.int/health-topics/coronavirus/laboratory-diagnostics-for-novel-coronavirus.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Disease Reservoirs/veterinary , Disease Transmission, Infectious , Pneumonia, Viral/transmission , Animals , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disease Reservoirs/virology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Sequence Analysis, Protein , Travel , Vaccination , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Vaccines , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL